Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Commun Biol ; 5(1): 290, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1774000

ABSTRACT

Nucleic acid detection is essential for numerous biomedical applications, but often requires complex protocols and/or suffers false-positive readouts. Here, we describe SENTINEL, an approach that combines isothermal amplification with a sequence-specific degradation method to detect nucleic acids with high sensitivity and sequence-specificity. Target single-stranded RNA or double-stranded DNA molecules are amplified by loop-mediated isothermal amplification (LAMP) and subsequently degraded by the combined action of lambda exonuclease and a sequence-specific DNA endonuclease (e.g., Cas9). By combining the sensitivity of LAMP with the precision of DNA endonucleases, the protocol achieves attomolar limits of detection while differentiating between sequences that differ by only one or two base pairs. The protocol requires less than an hour to complete using a 65 °C heat block and fluorometer, and detects SARS-CoV-2 virus particles in human saliva and nasopharyngeal swabs with high sensitivity.


Subject(s)
COVID-19 , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Nucleic Acids , COVID-19/diagnosis , DNA , Endonucleases , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/isolation & purification , SARS-CoV-2/genetics
2.
Biosensors (Basel) ; 12(2)2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1700284

ABSTRACT

Pathogen detection by nucleic acid amplification proved its significance during the current coronavirus disease 2019 (COVID-19) pandemic. The emergence of recombinase polymerase amplification (RPA) has enabled nucleic acid amplification in limited-resource conditions owing to the low operating temperatures around the human body. In this study, we fabricated a wearable RPA microdevice using poly(dimethylsiloxane) (PDMS), which can form soft-but tight-contact with human skin without external support during the body-heat-based reaction process. In particular, the curing agent ratio of PDMS was tuned to improve the flexibility and adhesion of the device for better contact with human skin, as well as to temporally bond the microdevice without requiring further surface modification steps. For PDMS characterization, water contact angle measurements and tests for flexibility, stretchability, bond strength, comfortability, and bendability were conducted to confirm the surface properties of the different mixing ratios of PDMS. By using human body heat, the wearable RPA microdevices were successfully applied to amplify 210 bp from Escherichia coli O157:H7 (E. coli O157:H7) and 203 bp from the DNA plasmid SARS-CoV-2 within 23 min. The limit of detection (LOD) was approximately 500 pg/reaction for genomic DNA template (E. coli O157:H7), and 600 fg/reaction for plasmid DNA template (SARS-CoV-2), based on gel electrophoresis. The wearable RPA microdevice could have a high impact on DNA amplification in instrument-free and resource-limited settings.


Subject(s)
Body Temperature , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acids , Wearable Electronic Devices , COVID-19/diagnosis , DNA , Escherichia coli O157 , Humans , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/isolation & purification , Recombinases/chemistry , Recombinases/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
ACS Appl Mater Interfaces ; 14(3): 4714-4724, 2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1655444

ABSTRACT

Surface-enhanced Raman scattering (SERS)-based biosensors are promising tools for virus nucleic acid detection. However, it remains challenging for SERS-based biosensors using a sandwiching strategy to detect long-chain nucleic acids such as nucleocapsid (N) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because the extension of the coupling distance (CD) between the two tethered metallic nanostructures weakens electric field and SERS signals. Herein, we report a magnetic-responsive substrate consisting of heteoronanostructures that controls the CD for ultrasensitive and highly selective detection of the N gene of SARS-CoV-2. Significantly, our findings show that this platform reversibly shortens the CD and enhances SERS signals with a 10-fold increase in the detection limit from 1 fM to 100 aM, compared to those without magnetic modulation. The optical simulation that emulates the CD shortening process confirms the CD-dependent electric field strength and further supports the experimental results. Our study provides new insights into designing a stimuli-responsive SERS-based platform with tunable hot spots for long-chain nucleic acid detection.


Subject(s)
Biosensing Techniques/methods , COVID-19/diagnosis , Nucleic Acids/isolation & purification , SARS-CoV-2/isolation & purification , COVID-19/genetics , COVID-19/virology , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Nucleic Acids/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Silver/chemistry , Spectrum Analysis, Raman/methods
4.
Anal Biochem ; 635: 114445, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1565506

ABSTRACT

The outbreak of COVID-19 makes epidemic prevention and control become a growing global concern. Nucleic acid amplification testing (NAAT) can realize early and rapid detection of targets, thus it is considered as an ideal approach for detecting pathogens of severe acute infectious diseases. Rapid acquisition of high-quality target nucleic acid is the prerequisite to ensure the efficiency and accuracy of NAAT. Herein, we proposed a simple system in which magnetic nanoparticles (MNPs) based nucleic acid extraction was carried out in a plastic Pasteur pipette. Different from traditional approaches, this proposed system could be finished in 15 min without the supports of any electrical instruments. Furthermore, this system was superior to traditional MNPs based extraction methods in the aspects of rapid extraction and enhancing the sensitivity of a NAAT method, accelerated denaturation bubbles mediated strand exchange amplification (ASEA), to the pathogens from various artificial samples. Finally, this Pasteur pipette system was utilized for pathogen detection in actual samples of throat swabs, cervical swabs and gastric mucosa, the diagnosis results of which were identical with that provided by hospital. This rapid, easy-performing and efficiency extraction method ensures the applications of the NAAT in pathogen detection in regions with restricted resources.


Subject(s)
Infections/diagnosis , Magnetite Nanoparticles , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/isolation & purification , COVID-19/diagnosis , Helicobacter Infections/diagnosis , Helicobacter pylori/isolation & purification , Human papillomavirus 16/isolation & purification , Humans , Papillomavirus Infections/diagnosis , Pneumonia, Mycoplasma/diagnosis , SARS-CoV-2/isolation & purification
5.
J Clin Lab Anal ; 35(11): e23998, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1525445

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19), is detected using real-time RT-PCR. However, there are limitations pertaining to quality control, particularly with respect to establishing quality control measures for extraction of viral nucleic acids. Here, we investigated the quality control measures for the various processes using an extrinsic quality control substance and quality control charts. METHODS: An extrinsic quality control substance was added to the sample, and then, real-time RT-PCR was performed. Samples with negative test results and the corresponding data were analyzed; a quality control chart was created and examined. RESULTS: Data analysis and the quality control charts indicated that SARS-CoV-2 could be reliably detected using real-time RT-PCR, even when different nucleic acid extraction methods were used or when different technicians were employed. CONCLUSION: With the use of quality control substances, it is possible to achieve quality control throughout the process-from nucleic acid extraction to nucleic acid detection-even upon using varying extraction methods. Further, generating quality control charts would guarantee the stable detection of SARS-CoV-2.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , COVID-19/diagnosis , Nucleic Acids/isolation & purification , Quality Control , SARS-CoV-2/genetics , Humans , Retrospective Studies , SARS-CoV-2/isolation & purification
6.
ACS Appl Mater Interfaces ; 12(50): 55614-55623, 2020 Dec 16.
Article in English | MEDLINE | ID: covidwho-1387129

ABSTRACT

Multiplexed detection of viral nucleic acids is important for rapid screening of viral infection. In this study, we present a molybdenum disulfide (MoS2) nanosheet-modified dendrimer droplet microarray (DMA) for rapid and sensitive detection of retroviral nucleic acids of human immunodeficiency virus-1 (HIV-1) and human immunodeficiency virus-2 (HIV-2) simultaneously. The DMA platform was fabricated by omniphobic-omniphilic patterning on a surface-grafted dendrimer substrate. Functionalized MoS2 nanosheets modified with fluorescent dye-labeled oligomer probes were prepatterned on positively charged amino-modified omniphilic spots to form a fluorescence resonance energy transfer (FRET) sensing microarray. With the formation of separated microdroplets of sample on the hydrophobic-hydrophilic micropattern, prepatterned oligomer probes specifically hybridized with the target HIV genes and detached from the MoS2 nanosheet surface due to weakening of the adsorption force, leading to fluorescence signal recovery. As a proof of concept, we used this microarray with a small sample size (<150 nL) for simultaneous detection of HIV-1 and HIV-2 nucleic acids with a limit of detection (LOD) of 50 pM. The multiplex detection capability was further demonstrated for simultaneous detection of five viral genes (HIV-1, HIV-2, ORFlab, and N genes of SARS-COV-2 and M gene of Influenza A). This work demonstrated the potential of this novel MoS2-DMA FRET sensing platform for high-throughput multiplexed viral nucleic acid screening.


Subject(s)
Biosensing Techniques , COVID-19/diagnosis , HIV Infections/diagnosis , HIV/isolation & purification , COVID-19/genetics , COVID-19/virology , Disulfides/chemistry , Fluorescence , Fluorescence Resonance Energy Transfer , HIV/pathogenicity , HIV Infections/genetics , HIV Infections/virology , Humans , Molybdenum/chemistry , Nanostructures/chemistry , Nucleic Acids/genetics , Nucleic Acids/isolation & purification , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
8.
Biosens Bioelectron ; 169: 112592, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-747238

ABSTRACT

Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.


Subject(s)
Communicable Diseases/diagnosis , Lab-On-A-Chip Devices , Nucleic Acids/isolation & purification , Plant Diseases , Point-of-Care Systems , Betacoronavirus/isolation & purification , COVID-19 , Chemical Fractionation/instrumentation , Chemical Fractionation/methods , Communicable Diseases/microbiology , Communicable Diseases/parasitology , Communicable Diseases/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Equipment Design , Humans , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/blood , Nucleic Acids/urine , Pandemics , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Diseases/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2
9.
Public Health ; 186: 1-5, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-642460

ABSTRACT

OBJECTIVES: Nucleic acid testing is the gold standard method for the diagnosis of coronavirus disease 2019 (COVID-19); however, large numbers of false-negative results have been reported. In this study, nucleic acid detection and antibody detection (IgG and IgM) were combined to improve the testing accuracy of patients with suspected COVID-19. STUDY DESIGN: The positive rate of nucleic acid detection and antibody detection (IgG and IgM) were compared in suspected COVID-19 patients. METHODS: A total of 71 patients with suspected COVID-19 were selected to participate in this study, which included a retrospective analysis of clinical features, imaging examination, laboratory biochemical examination and nucleic acid detection and specific antibody (IgM and IgG) detection. RESULTS: The majority of participants with suspected COVID-19 presented with fever (67.61%) and cough (54.93%), and the imaging results showed multiple small patches and ground-glass opacity in both lungs, with less common infiltration and consolidation opacity (23.94%). Routine blood tests were mostly normal (69.01%), although only a few patients had lymphopenia (4.23%) or leucopenia (12.68%). There was no statistical difference in the double-positive rate between nucleic acid detection (46.48%) and specific antibody (IgG and IgM) detection (42.25%) (P = 0.612), both of which were also poorly consistent with each other (kappa = 0.231). The positive rate of combined nucleic acid detection and antibody detection (63.38%) was significantly increased, compared with that of nucleic acid detection (46.48%) and that of specific antibody (IgG and IgM) detection (42.25%), and the differences were statistically significant (P = 0.043 and P = 0.012, respectively). CONCLUSIONS: Nucleic acid detection and specific antibody (IgG and IgM) detection had similar positive rates, and their combination could improve the positive rate of COVID-19 detection, which is of great significance for diagnosis and epidemic control.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Adolescent , Adult , Aged , Antibodies, Viral/isolation & purification , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Coronavirus Infections/epidemiology , Female , Humans , Immunoglobulin G/isolation & purification , Immunoglobulin M/isolation & purification , Male , Middle Aged , Nucleic Acids/isolation & purification , Pandemics , Pneumonia, Viral/epidemiology , Reproducibility of Results , Retrospective Studies , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL